
ADA* EVALUATION PROJECT un FI~~d

USAGE AND SELECTION OF ADA* MICROCOMPUTER
COMPILERS

Prepared for
00 HEADQUARTERS UNITED STATES AIR FORCE

Assistant Chief of Staff of Systems for Command, Control,
(Communications, and Computers

Technology & Security Division

DTICS ' -LCTED,AR~O 1 1990D

Approved for pub ic teleasc
Distnbuzaon I.Unlimited

Prepared byStandard Automated Remote to AUTODIN Host (SARAH) Branch
COMMAND AND CONTROL SYSTEMS OFFICE (CCSO)

Tinker Air Force Base
Oklahoma City, OK 73145 - 6340

COMMERCIAL (405) 734-2457 / 5152
AUTO VON 884 -2457 / 5152

* Ada is a registered trademark of the U.S. Government
(Ada Joint Program Office)

9 December 1986

90 02 28 004

THIS REPORT IS THR FOURTH OF A SHRIKS WHICH
Doc UMNT 1 THEX L -5-1SNS ICEAR-NIRD- I N TH K UJI O3P0-- -ADA1 IN A-

COMMUITCATIONS ENV IROiMENT.

ABSTRACT

This paper discusses Ada microcomputer compilers
and seeks to provide information to aid in
successful selection of compilers for Ada software
development. Selection of Ada compilers is
significantly more complicated than selecting
compilers for older programming languages.
Effective requirements analysis and selection of
Ada compilers will have a large bearin,, on how well
project teams are able to develop Ada softwar,!
products and how effectively the products will
execute.

After an infroduction in Section I, the second
section of this paper describes the benefits of
using microcomputers to develop 4da software. .'i:f
studies are provided to give examples of how
microcomputers can be integrated into a software
production environment.

Choosing an Ada compiler is the topic of the third
section. Specific criteria are highlighted and
references are provided to publications which
provide more detailed selection guidelines. Section
4 then discusses some of the currently avai lqble
compilers.

Some of the c urrent limitations ind problems of Ada
compilers are discussied in Section 5. Topics ou,,h
a i n'rke rn entha compi 1 t iion, disatr i buted library
system's, fInd low level Cfeatures are covered so that
prospective Ada developers are aware nf the types
of things that they should look for in future Ada
compilers.

Section 6, on experiences and performance issues,
provides information on many of the most commonly
asked questions. The information presented refers
mainly to the AlsyCOMP_003 compiler for the IBM PC-
AT and compatible computers. o
Phe final section deals with future directions,
,id' AreL i ng i ssue such a:n comp 1 at io)n rates,
opt i in i t ion, and comp i. ler on v i ronmernt integrnt ion.

STATU['4T "A" per Capt. Addison ' :,.,, . i
Tinker AFB, OK PICSC/XPTA A, ,T
TELXCON Z/28/90 CG

• . m m m m 44

Ada E.valuation Report Series bXy COSO

% n ra i ni. rig "lirch 1'5, 1 9936

1)e: i,,n 19 iei ?i:i, T1 , I'le:'

:)ecurity May 23, 1983b

Micro Compiler3 December 9, 19?86

kda Environmens December 9, 1986

Transportability Winter 86--3'7

Iodifiability Winter 36-87

Runt me 1,xecit i on Winter 96 -87

Iodule Reuse Spring 87

pesting Spring 37

Project Management Spring 87

.umm ry Fa1 1 37

T A B L E 0 F C 0 N T X N T S

1. INTRODUCTION ... 1
1.1. THE ADA EVALUATION TASK 1
1.2 . BACKGROUND .. 1
1 . . PURPOS. . ..
t :, ;'() I'II.: A N 1 (' N: ' Ai N'...I

2. MICROCOMPUTERS FOR ADA DEVELOPMENT 4
2.1. ENHANCED PRODUCTIVITY 4
2.2. TOOLS FOR PRODUCTIVITY 4
2.3. DISTRIBUTED DEVELOPMENT ENVI"ONMENTS 5

3. CHOOSING A MICRO COMPILER 7
3.1. SELECTION CRITERIA 7
5.2. VALIDATION ...
3.3. BENCHMARKING .. 8
3.4. DISCUSSIONS WITH USERS 9
3.5. RUNTIME/EXECUTIVE LICENSES 10
5.6. VENDOR SUPPLIED PACKAGES 10

4. CURRENTLY AVAILABLR MICRO COMPILERS 11
4.1. REHOSTING .. 11
4.2. COMPILER INFORMATION 11
4.3. PC COMPILERS ... 11

'. COMPIllER LIMITATIONS AND PROBLMMS 13
5.1. INCREMENTAL COMPILATION 13
5.2. INTEGRATED ENVIRONMENTS FOR PCs 13
5.3. LIMITED TARGETS 14
5.4. DISTRIBUTED LIBRARY SYSTEMS 14
5.5. LOW LEVEL FEATURES it

6. EXPERIENCES AND PERFORMANCE ISSUES 16
6.1. CODE EFFICIENCY 16
6.2. SIZE OF RUNTIME SUPPORT 16
6.3. RENDEZVOUS TIMES 17
6.4. TASK SCHEDULING 17
6.5. QUALITY 8

7. FUTURE DIRECTIONS ... 20

8. SUMMARY AND RECOMMENDATIONS 21
8.1. SUAMARY .. 21
8.2. RECOMMENDATIONS 22

Appendices

A. REFERENCES .. 23
B. DEFINITIONS AND ACRONYMS 24

1 . I'TRODIJCT[ON

I 1. TiIi,: ADA IVAI,IIAT'ION 'A: K

3 0e V 3 0:10 11 '1 ZIIiz w I .h I ho I I, po -!I I 't \
developers gatn practical insLght into what is requirod to
successfully develop Ada software. With this goal in mind, Air
Staff tasked the Command and Control Systems Office (CCso) to
evaluate the Ada language while developing real-time
communications software. The task involves writing papers on
various aspects of Ada development such as training, Ada design,
environments and security issues. This paper discusses selectior.
and usage of microcomputer compilers.

'CSII 'hose the Standard Automated Remote to AUTODIN (Aitoi"m tic
Di ita L Network) Host (SARAH) 1 project as the vehicle baS ' for
the Ada eva luat ion. .ARAH is a -ima I I to med i um size pro jec'
(approx. 40,000 lines of source code) which wil l function :3s
standard intelligent terminal for AJTODIN users and will be used
to help eliminate punched cards and paper tape as a
tranqmit/receive medium. The development environment for .7%RAH
cfnsi its of a number of 11B PC AT and Zenith Z150 mLcrocomputers,
and a Digital Equipment Corporation (DEJC) VAX 11/780. The source
code produced is compiled on the PC A2s using Alsys Ada compilers
and the object code is targeted to both the Z1 50 and PC AT. -he
VAX was intended to be used for configuartion management support
and to function as a repository for reusable Ada code. The SARA71
software will run on a range of PC XT, PC AT, and compatible
microcomputers under the iISDOS operating system (version 2.0 or
higher)•

1.2. BACKGROUND

The dramatic increase in the power of microcomputers,
particularly personal computers such as the IBM PC AT, has made
it possible to use these machines as effective Ada development
workstations. Ada is resource intensive. For example, the
c, m pi IPra themselves generally consist of inore than 300,000 1 ine:
of comp IPeK source cod<e. In addition, because of the stri ,-t
i oter-module h,.-!k ing, Ad, ,ompi lers do not currently support
program overlay3 and so applications generally require a large
amount of memory. But, the future is bright for Ada in terms of
machines which will be able to support Ada development. Systems
are now beginnLrig to appear that use the new 80386
microprocessor. These processors support up to 4 Gigabytes of
physical memory and 64 Terabytes of virtual memory 2 . M4oreover,
the 80336 executes at four Million Instructions Per Second
(HIPS), and this equates to the power of a Digital]quipment
Corporation VAX 11/780 minicomputer. This is indeed a dramatic
increase in power over the older Personal Computers (PCs). For
example, the IBM PC XT executes at only 353,000 instructions per
3econd and is generally limited to 640 Kilobytes of physical
memo ry.

-i

The flexibility, power, und cost of PC workstations make them
good candidates for Ada development. In the future, these
works tat ions w i l play a large ro l e in Ada production
environments. By effective networking, together with a system of
distributed source and library databases, micros can dramati,-al ly
imjrove development throughput. tndiv idual workstations c.,in
vipport a number of general pu rpo!ip and Ada speciI' o pre,,l ,'V, 1vi ty
t"' I s. A I i r,:, n ninber oeC tho ,o too 1S a l roni y -i" i:;t Y' r P t:
diiv i ronmernt i 'rit, d tnarii i (#nooura gi g the uev-L Io pmoint ot itiny
more. Ultimately, these tools w 1 L be intugrs-- tei into :1 very
powerful Lda development environment together with the compiler.

As more micro compilers become available, compiler requirements
analysis and selection wil become an important step in the
procurement and development processes. Tn additLoii to ensuring
that an Ada compiler can produce good qilaI i ty code and -- , .r, le
programs quickly, the prospective user must have some knowledge
of the compiler's targeting capabilities, how well the compiler
will integrate into the development environment, and the
effectiveness of the tasking model implementation. To assess
quality and performance, benchmarking and benchmark reports are
an important cart of requirements analysis and selection.
'ffective requi.ements anal ysis and selection of -n Ada comp- Ier
play an important part in determining the success of Ada
projects .

1.3. PURPOSE

The purpose of this paper is to:

o Provide information on the benefits of us 3 ng
microcomputers for Ada software development.

o Discuss important considerations for choosing
microcomputer compilers.

o Provide details on currently available microcomputer
compilers.

o Highlight some of the limitations, performance issues,
and problems that have been experienced with
microcomputer compilers.

o Provide information on what to look for i Future
c(rn p i 1 rs.

1.4. SCOPE AND CONSTRAINTS

* ' hi paper d *cussi- various aspects of mi crocomputer compilers;
however, M0 1r' omphasLs iz given to Personal Computer (PC)
environments such as the 11 I PC AT. This has been done for a
number of reasons. First, the SARAH team has received a large

number of enqii rieo regarding PC onp i lers and sio we fe,, I thnt .

discus3ion of this type would seem appropriate at this time.
Secondly, there is a large range of computers, loosely termed
microcomputers, that host Ada compilers. A discussion of each of
these env i ronment34 and th i r respec t i V eompi I -s wol 1 d b, boy'I1,
the scope of thLlA type o" paptr. 1?0:1d or:, ;,1 o Ii I ' r'i r t o
the va ri ous bonchinarking reports3 to gain addit iona l
information on these systems. Third, we see the PC workstation
as an important tool for Ada development because of its low cost,
flexibility, and versatility. As such we enccuragc the use of
PCo- a~td the development of Ada PC tools.

. . . . • • • • nn • | | 3

2. MICROCOMPUTERS FOR ADA DEVKLOPMgN'P

licrocomputers can provide cheap and versatile Ada workstations.
Also, an Ada development environment consisting of microcomputers
is more survivable than an environment hosted on a single
machine. For example, problems with one workstation will not
severely affect overal 1 production. SARAH team members have
found tha+ working with indi vidual workstations has improved
their productivity because t ey have fiexibility in choosing and
configuring the development tools for their particular system and
they have the full power of the compiler hen it is needed.

2.1. ENHANCED PRODUCTIVITY

Development productivity can be enhanced through the us. of
workstation compilers. One of the major problems with current
Ada compilers is that they require a significant amount of
computer resources. For example, on a vAXi i/780, current Ada
compilers can support a maximum of three to five concurrent
compilations without severe performance degradation (i.e.
compilation rates drop below usable limits). Some compilers,
for example the SofTech Ada Language System (ALS), severely
iegradate with more than two simultaneous compilations. By using
a network of microcomputers, the compilation load can be shared
by a number of machines. ".oreover, if the project team expands,
additional machines can be introduced at a relatively low cost so
that team productivity can be maintained.

2.2. TOOLS FOR PRODUCTIVITY

The PC compiler is only one tool which can enhance software
development: the PC environment will support many general and nda
speci fi , tools to help in the production of high quality Ada
.oftware. The SARAH team uses several gerirnt purposo tool:i to
:id in Ad|n i :oftware produ Ction. For t xainp Io, V11riou:1 text
e(ILtoU and tools such as Borland's sidekick and SupcrKey ire
used to support development. In addition to the general purpose
tools, there are now several Ada specific tools available for
PCs. For example, Xinotech Research, INC. markets the Xinotech
Program Composer which is an extremely powerful syntactical Ada
text editor. Other tools include: an on-line Ada encyclopedia
from Tacyon; the AdaGraph design and development system from The
Analytic Sciences Corporation; and Sketcher, an interactive
Graphical Ada software design tool from SYSCON. The PC provides
the basis for an extremely powerful Ada development environment
but the full benefits will not be realized unless the tools work
together in an integrated manner.

4

*. D. D[ST| I IBUITED K)+VN:E 1OPMf:NT ,:NVIVU NMENr.

Networking i:; required if miJ rocompu t~r ir, to br i :i r o

effectively in a development environment. Ca rof Vul considert, Lo1
mu ; t be gi v en to how m [oros o r- u:iedi for 3o 1 t w o re i d, v,, I 1,j : ,,
o t h, r w i se j o r io u o n f i g u r . t 1 n c o n t ro I , ,I p,.roi t - L I V L i y
probl.,m2 will arise. &or example., without a network, team members
are more inclined to maintain their own versions of the modules
they are developing rather than constantly updating a central
project library. To use micros effectively, a distributed
environment which maintains a distributed source data base and
distributed library system should be installed. The file server
sne.uld host configuration management tools and allow for target
code production if embedded applications are being developed.

The development environment used by Alsys inc. of Waltham 'A

provides a case study of how micros can be used for Ada software
development. k1sys uses a scheme where each engineer on the
compiler projeot has a PC AT and these are -onnecied to a VAX
11 /750 v i a e the rnio t 4 . The ne twork has 'in eft'e'o t I ve
t ransmi!3 Lon rate of about one megabyte per minite. 7o o 1A s u h
as the VAX DEC/Code Management System (CI-1) provide functionni
such as configuration management. The VAX also provides a
repository of Ada source code. The network cost A 1sys
approximately $6000 for VAX enhancements and $1000 for each PC.
Thc proliferation of networks for PCs has reduced cost3

significantly and as prices continue to fall, the total cost of
installing thiq type of network will be far less than the quoted
figures.

Another source of information on using micros for Ada qiftware
production is the Software Engineering Institute (SEI). :he sEI
will provide information on distributed development environments
as a result of their Showcase Environment project 5 . Their soil
is to implement a software development environment to suppovt the
constrction of software systems cosisting of up to one mill[u'l
lines of source code. The S I intends to exploit the
capabilities of workstations with high resolution graphic3

di2p lays. These workstations will be supported by local are3
networks. The results of the work being done by the SEI on the

Showcase Environment could prove oeneC1~.al f. . a e.i ofns 4:io

are contemplating installing a distributed Ada development
onv ironment.

CC:;0 attempted to implement an Ada development environment
consisting of a number of PCs and a VAX 1 1 /180: however, tiie
result was not particularly successful. One. of the major reasons
was that no local area networking facilities were available. As
-iuch, the time required to upload and download data was
excessive. In addition, the communications package being used
was not particularly friendly and so team members were reluctant
to use the system. Another problem was that the SofTech Ada
Language 3ystem (ALS) was to provide the automated configuration
management support for the project. The tools provided by the
ALS, were good in concept, but some were unreliable and not

5

particularly easy to use. If NCs are to be used in an Ada

development environment, then thought needs to be given to

networking and effective tools need to be secured to aid in
source code management.

- - " l I I II

5. CHOOSING A MCi(O COMPII ,HH

An e' ctive requirements analysis for the selection of mi " 2 Ado
"w pi er. will bec,)me ever more importaiit os th,, ril " "
tvai lable compi lers increases. 2his section d .3cusses select lof
criteria for Ada compilers. Ads compilers are very k:i m P ex
p Rces j:" software and are intended to be ised in an I it
0 :,r mming Support ,:nvironment (APSE). As such, ma:ypar i t. r,7
:q Ujt be consider e,. In add i tion to am ;es : ng compi er
re Ii emr ents, prospec Li ve users must ass3ess -dua l 1 ty An I
effectiveness f)r Ada software production. Sever-Il netn ,I
le u-ed t q assl, P 3 these criteria. For exompie, this se
J :i,-i.ses the u:e ,f" bnnchmarking, benchmark test ro-s;' ts, ,,t-

I0 e pri nce, n 1 4 Vsr,i:, ion' with users to cii i n
o I pe t I on. v t, r: 1) t h e r i m po r t a n t consi ier I rut - ,

ii t m F exi(tt i v e licenses and vendor supplied packages ur,- A 1)
L -ac i33ed. Appropriate selection of Ada :ompi 1 ers -i
1mpo rtant step for successful development of Ada s f w re
products.

5.1. SELECTION CRITERIA

ne s" ection criteria for Ada compilers is more cor ii e x
theft r :eral ly applied to the selection of compilers r
Iln,(', e . Wa I I i 3 n i W i c h ma nn 5 ind ica te that "..idpal 1 51 ,
"m p i 1 -.r" .shou]d Ompi l the L a ngtwige de fi nid in th - Ic -,.
:i' idrI, prodacP gal q1 l ity code, ompi le program q ui kly .-
give , ood Iiagno!4tic:3 whenr needed. These are indeet requir me t-1
fr a goo comp ler, be it Pascal, ortran, or Ada. ut , '':
Adq, s everai other criteria also need to be considered. cio,
example, one also needs to know which targets are supported, h w
well the compiler fits into the development environment, and h .s
effectively the compiler supports tasking and low level feat ire:-.

kI ist of essential parameters for compiler selection has been
generated by an Ada-Europe working group 6 . This guide is written
from the point of view of someone wishing to know something about
an existing compiler und indicates what information may be needed
from the compiler supplier. A check list is provided for each
c r i teria and the guide is very easy to fol low. nyone
considerine the selection of an Ada compiler would be well
adv ised to look at this guide.

An iLmprtant cri te! ria for the selection of an Ala compi Let, i:
low we l l wi I I the compiler integrate into the wo r-ki nI,
environment9 There are many things that need to be considered.
or exa7npl e, does the compiler prodoce intermediate pro-'rn-

representa ions (e.g. DIANA (Descriptive intermediate Attribut-(i
Notation for Ada) code). .s there i human readable form of this
'. d P 'il t thpr t,)l : .such is :lehu gq rs be abe I to) use s, -I

repes- entation9 Can other gneral purpose tools be invoked wheon
the Iomp i 1 r is loaded? The SARAH team expori enced toe
integration pro.nlem first hand. When the Alsys compiler (Version

7

was procured for the P,, ', 'a, evuryone wais dismayed y th#
i ict th-at tools sich as 3idekick and Supor Koy would not run when

t!, t -omi p ler was Loaded. 'Pe:im members had b ,kfl using thusr 31- 1 s
previously a nd f o un d tha t t h ey s i n g i 'i : nl t I y i. ipn 1) (I)V k. i t h e
e ect vene: 3 o t' the workstations. Thankful l y A iaya wia .tune
t i ,ir neels 'and when Version 1 .2 o f the compi ler wmH. re I eaied,
*e were once again abl! to use our favorite tools. The prbIPms
*f incomnpatibility will be more pronounced wheri more Ada spe, f (
tools are released. "ffective integration of Ada tool .3 or
microcomputers is an importa',t consideration.

Target support is another criteria that must be considered ,he,
selecting a mincro Ada compiler. For example, the Alsys compiler
targets to the PC A'7 and PC XT (and selected comnpatitle
computers) rinning under the f4SDOS operating system. The C-, Sf3
compiler is al io hosted on the PC AT but it oill not ta-.t(t "-,ode
to run ander MSLOS. The two compilers run on the saue ho lt but
are completely different and are used for dif ferent leasons: the
I sys produces M3DOS appl ications software, whereas the) '%1Y;

wil be used for producing embedded 3cftware applicat ionsi. :ar.-
faust be taken to select the right compiler for the job.

3.2. VALIDAI'ION

Validation does not ensure quality! This is perhaps one of the
most important things to remember when procuring an Ada compiler.

Validation simply ensures that the compiler conforms to the

language definition and is only a small part the overall compiler
specification 3 . m4]ven though a compiler is validated, it may have

s-i cceptable compilation rates, be unreliable, and may produce
ifficient code. The Ada Validation Office (AVO) checks to see

if the compiler conforms to the language standard 7 but does not

attempt to provide any information on quality or effectiveness.
Ar- such, the prospective user must resort to other methods, such
as benchmarking, to ensure that the compiler will indeed meet
req u i rements.

3.3. BENCHMARKING

Benchmarking plays a big part in determining the quality and

effectiveness of compilers. As discussed, validation ensures
ta::t the compiler conforms to the language standard but says
nothing about quality or efficiency. Benchmarking and ben,-hmark
test results can provide comparative data that can be used to
assess the performance of compilers.

Copies of benchm'mrk test results are now becoming available and
can be extremely useful for compiler selection. A big benefit of

getting benchmark test results is that the testing is generally
done in conjunction with a test methodology and so comparative
sit,.idies are generally more accurate than if the tests were
app lied by inexperienced personnel. The 3,L has recently
p ibl ished benchmarks for several environments 3 . This document
:l lso outlines the methodology that was used for the tests.

liopeti a I ly, the Si';[w I 1 cont inue to produce thesp high qual i ty
reports. The Special interest Group on Ada (.iAda) Perforitn,
, sue.3 Working Group Ls also compi ling benchmark l~e:;t, ref; i I ts.
These results wi 1l be made evaitlable to JSGAdIa members.

The Ada Compi ler v:i luat ion Capahility (AC .C) wi I be i v,,ry

effective set of benchmarking toola for determiriLnk th, qui t i t
and effective e.3s of various compilers. The prot ,Lpe ACEC becjiqe
available from the Ada Validation Facility in January 1 386. The
benchmark tests were collected and organized into this prototype
suite by the Ada Programming Support Environment (APS E)
Eva lua'ion and Validation (E&V) team. To get a copy of the
prototype test suite a request can be submitted to:

The Ada Validation Facility
ADS/SIOL
Wright Patterson AFB
OH 45433-6503

he request must be on a company letterhead and shoul be
:ccCmpanied by a 2400 foot magnetic tape (tape format information
must be providel). Additional tests and ana Iy: iq tools wi I l be
available in the ACEC when it becomes available.

Benchmarking gives you a chance to get "hands-on" experience with
the compiler before purchase. This is important since witn
"hands-on" the uoer interface and general usability criteria can
be assessed. Even if test results are used to assess whether a
compiler will meet project requirements, organizations should
attempt to use the compiler before purchase. The bench irk
programs can be used for gaining this "hands-on" experience. .y
using the compiler, prospective users can get a good idea of
reliability, the quality of user documentation, and general ease
of use.

3.4. DISCUSSIONS WITH USERS

One of the best ways to determine how well a particular compiler
performs or whether it is suitable for your needs is to talk to
experienced users. The SIGAda meetings provide an excellent
forum to engage in these discussions. Three national SlGada
meetings are held each year and local groups generally have
regoilar meetings. Most of the larger vendors also support users'
groups for their products. Attendance at these meetings provides
a good insight intu the quality and effectiveness of particular
products. tor more information on SIGAda meetings conta,'t:

&t. fnrformation Clearitnghouse
0 l1;,) (1,111 S. 'Oern, C;-107)

The Pentagon
Washington D.C. 20301-3081
Ph. (703) 685-1477

9

ht Adai , tit'.) rli f, i on 71 ea ringhou.no, ,il :o pruovijdt in rif*,r.:t it) n :i

curren tly val ido'ted rompilers and other Ada related inform;itton.

3.5. RUNTIME/EXECUTIVE LICENSES

dhen selecting a compiler remember to check the I Lcense
agreements and contracts carefully. Some compiler vendor s are
charging royalties on the runtime package. For example, A1sys
provides 10 free executive li,,enses with each compiler. 7his
:eans that if the application being developed wi]] be used on
more than 10 systems or if the software is to b sold to more
than 10 people, then license fees must be paid to Alsys. T he
fee*3 v-ry with the number of time3 the runtimo noftwarm wi I be

t) ,,1. or itin he he t w an 1 1 it i)O0 A I ; y :t t i be po1
r 0' py . i' hLi redtuoe I $1 o $ per copy fo r imkinih r.1 r' m ri j n r , i

))1 thr u 1'm * li)),UW). ts m.re comnpiIer:i become oivi iIl h ,I
organ Lzations would be well advised to stay clear of compi I er:3
that have this type of licensing scheme.

3.6. VENDOR SUPPLIED PACKAGES

A major benefit of Ada is that the language is standardized and
strictly controlled by validation and is not tied to individual
vendors or machines But, is this entirely correct? Several
vendors are providing additional packages that aid the software
developer but these packages take the form of an hda pre-defined
package (i.e. no source code is provided). klsys provides two
3uch packages: ' ;nsi ned' and 'DOS'. The D0 3 p-tckage provides a
number or" funct ions that inake cal ls to the M SDO operating

S iten. Reatures such as buffered keyboari input, f t I
input/output, and absolute disk access are provided. Without
doubt, these features are necessary in many applications and the
A'iys pasckage can save development time. However, since nource
code is not provided, the applications software cannot be
compiled with another Ada compiler unless a DOS package similar
to the Alsy3 package is developed. In a sense, if a vendor's
pre-defined packages are used, the applications developer is
tying the application to a particular compiler vendor. As
itated earlier this can be dangerous.

10

4. CURRENTLY AVAILAIBLE MICRO COMPILERS

T h t n u ni hi dr o f v a [i i t d Adr c omp i I o rs t q i nr,; ,i rig nt , '.-:4 f

r s t e.) no o f t h o l|n i or r eu :% o (in o r t, ti r.i 1, i d i ri, ro -i i :i .tn ti 1,

Ada compilers :,r,- easily reho3ted and so a "bane" compiler can
run on a large number of different machines. 4s such, many of
the compilers that run on larger machines will also run on
micros. This section discusses some of the currently available
compilers, provides references for obtaining more comprehensive
and up-to-date lists of validated compilers, and provides
information on some of the PC compilers currently under
development.

4.1. REHOSTING

Since moa;t Ada compilers are themselves written in Ada, rehoating
to other environments has not been as difficult as has been th'
case with older languages. As such, many of the compilers that
were developed on larger machines have been rehostel to
microcomputers. or example, several compilers and environments
have been rehosted to the MicroVAX. Some of the compilers
currently available for the MicroVAX are the D' C VAXkda, the
SofTech ALS, and TELESOFT's TeleGEN2. Another very popular miczr
based workstation is the Sun Microsystem. OrAniz-itLons sur ,:
Telesioft, Verdix, Alsys, TeleLOGIC, and New York University have
rehosted their compilers to this environment.

4.2. COMPILER INFORMATION

The Ada Information Clearinghouse (AdaIC) is one of the best
sources to find out which compilers are currently validated and
which vendors have indicated their intention to validate.
Current validation ILsts are provided in each copy of the AdaIC
newsletter. The lists provide information on the vendor and
compiler, the host machine, and target machines. In addition
Ada[C maintains an Ada Language Implementations AIatrix 9 which
shows all validated compilers as well as compilers that are under
developinotit or waiti-rg validation.

4.3. PC COMPILERS

There is still not a large range of validated compilers fr PCs.
One of the major problems has been that the PC environments have
not been powerful enough to accommodate an Ada compi ler. W;or
e×xample, most PC systems have been limited to 640 Kilobytes of
memory and execution rates have typically been less than I MIPS.
The IBM PC AT now provides an adequate environment to support Ada
development, and future machines, based on the 80386
microprocessor or equivalent, will allow vendors to effectively
rehost their compilers or develop specific PC compilers. Since
PCs are cheap and provide an environment that has become an

11

industry standard, PC compilers will be an important ,nd
lucrative market for vendors.

Two compilers that have been validated on the IBM PC AT and
compatibles are the Alsys AlsyCOMP_003 and the OASYS PC Platform.
These products are very different in concept. The Alsys compiler
runs under the MSDOS operating system and directly uses the PC
hardware. To run the compiler, the PC AT memory must be expanded
to 4 Megabytes. Alsys markets their compiler with a 4 r4egabyte

memory board. Object code generated by the Alsys compiler must
run under MSDOS and can use the protected memory mode of the
80286 microprocessor in the PC AT. Applications are therefore
limited only to the maximum memory that the 80286 can support (16

4egabytes). Object code can also be targeted to the 8088 based
PC XT but the application must not exceed 640 kilobytes.

The OASYS PC Platform does not exclusively use the PC hardware
for operation. To use the OASYS system, a processor card must be
Lnstalled and this card hosts the compiler. The platform card
contains a 32 bit N332032 microprocessor oper'iting at 12.5 Mega
iier tz and up to 16 Megabytes of memory. As such, the PC itself
is only used as an input/output processor for the installed board
which gains control of the entire system. Tne compiler that is
hosted by the PC platform is the Verdix Ada Development System
(VADS) and runs under the UNIX V.2 operating system. A major
difference between the Alsys and OASYS compiler is that the OASYS
does not target to the MSDOS environment and will not produce
code to run on the host machine. One of the advantages of the
OASYS compiler is that all the VADS embedded targets will be
supported. This will include target support for the 1750A,
68000, NS32032, and a range of Intel processors. In summary,
the OASYS system does not currently target applications to run
under MSDOS in the host configuration and uses a separate
processor board for operation. The Alsys compiler is a true PC
AT compiler but does not support targets other than the PC AT and
PC XT; applications must run under MSDOS.

Other organizations that have indicated their intention to
validate on PCs are ARTEK, JANUS, General Transformations, New
York UniversLty, and General Systems 9. Many organizations
attempting to develop low cost Ada compilers for PCs have failed
because they have underestimated the complexity of the language
and the computer resources necessary to run the compilers. For
example, the Alsys PC AT compilers consists of approximately
300,000 lines of source code and requires 6,161 Kilobytes of disk
storage to load. The requirements for inter-module checking,
run-time error checking, and concurrent processing place a heavy
burien on developers and host architectures. However, continued
compiler research, more experience, and more powerful PCs will
result in many more Ada compilers for PCs. As more compilers
become available, costs should also decrease.

12

5. COMPILER LIMITATIONS AND PROBLEMS

Many of the limitations and problems discussed in this stct Lon
are not peculiar to micro compilers. Indeed, the problems affect
a very large number of currently availnble Ada compilers. A
discuJ;mion of problems and limitations a 'e pruvided in this paper
to increase general awareness and to help in successful compiler
requirements analysis and selection. Some of the limitations and
problems discussed in this section are: the lack of incremental
compilation, the need for integrated PC environments, the lack of
target support, the need for distributed library systems, and
support for low level features.

5.1. INCREMENTAL COMPILATION

lncrement l compilation allows the user to make changes to
module without having to recompile all the dependent modul, 3.
The lack of incremental compilation can result in a huge
recompilation overhead. This is because the dependencies buiIt
into Ada for inter-module consistency checking can cause even
insignificant changes to result in a propagation of
recompilations. Ada compilers need to support interactive
changes. One way to support interactive changes without
incurring excessive delays is to incorporate the changes in some
rich data object such as a DIANA tree which preserves syntactic
and semantic information rather than in simple ASCII text files.

Of th. compilers currently validated, only the Rational supports
incremental compi letLon. Hopefully, as the state-of-the-practice
for Ada compiler design improves, necessary features such as
incremental compilation will become common-place, even on
microcomputers.

5.2. INTEGRATED ENVIRONMENTS FOR PCs

The lack of an integrated toolset/environment is a serious
limitation to the Ada developer. A great deal of effort has been
expended in defining Ada Programming Support Environments
(APSE)10 and tool interfaces (Common APSE Interface Set)1 1 but
the recommendations may not be entirely sufficient for
distributed Ada development environments consisting of a large
number of micros. Indeed, organizations producing Ada tools for
PCs (including compiler vendors) are paying little attention to
any standard tool interfaces.

A] though there ar, several Ada specific tooli now available for
the PC and many more currently under development, little thought
has been given to integration. If the tools are to be truly
effective in a PC environment, then they must be integrated. ?or
example, users should be able to move easily between the editor,
compiler and debug facilities. This should be accomplished
through some modern user interface (perhaps consisting of a
system of icons and windows). Also, standard interfaces should

13

be provided for distributed source databases and compilation
libraries. Interfaces for local area network communications
should also be well defined so that the power of networking can
be fully realized. Powerful Ada development tools for PCs are
beginning to emerge; however, a standard method of integrating
the tools is yet to be defined.

5.3. LIMITED TARGETS

The Ada software? industry is drastically in need of compilers
which target to a range of embedded computers. The Ada language
was primarily designed to support the development of software for
embedded systems. Yet, to date there are very few compilers that
target to a range of embedded computers. Microcomputers such as
the DEC MicroVAX support a number of products that will target to
embedded systems; however, the range is extremely limited. For
example, until recently, if an embedded application was required
for an 8086 based embedded system, then the only compiler that
could be used for development was the ALS.

If a PC network is to be used for development of embedded
applications then some thought must be given to how the targeting
will be accomplished. Compilers such as the one produced by

Alsys are excellent for developing source code and general
debugging, but do not target to a range of embedded systems. To
provide the target code, a machine must be selected which will
ho:- L a compiler that targets to the ,mbedded system Under
development. P"or example, the Navy standard embedded
architecture is the UYK 43 and the Navy specifies the ALS/N will
be used to target to this system. As such, one machine in the
development environment must support the ALS/N (perhaps a
MicroVAX). PCs (using PC compilers) could be used in a networked
environment to increase productivity during the development and
debugging of source code, but ultimately the machine hosting the
embedded target would be required for the production of target
code.

5.4. DISTRIBUTED LIBRARY SYSTEMS

A serious limitation associated with using PCs for development is

the lack of a distributed library system. A distributed library

allows team members to compile parts of the system on their
respective computers and to then test these elements without
having to re-compile on a central computer. Individual libraries
containing parts of the overall system can therefore reside on
separate machines and the compilation overhead is more evenly
distributed.

Without a distributed library, a central library must be
maintained for integration and test. Completed source modules
must be copied to the central computer, and compiled into a
central library. The benefits of using a LAN without some type
of distributed library are eroded because of the large amount of

14

file transferring that must take place.

5.5. LOW LEVEL FEATURES

Cirrent compilers lack many of the low level features which are
an integral part of the Ada language. These features are listed
in Chapter 15 of the Reference Manual for the Ada Programming
Language 7 . Some of the features that are generally missing are:
support for interrupts, representational clauses, and address
clauses.

Lack of low level features is a major problem because developers
must resort to using assembly language to provide the machine
interface. Even though these routine3 con:rist of only a few
titles of code, they create problems for ongoi .ng maintenance aind
configuration management. For example, in SARAH, a number of
small assembly routines are required for functions such as the
the low level communications driver and keyboarl driver. This
has created a problem fir a number of reasons. -'Irst, the :3RAH
team, although well versed in Ada, does not have very riiach
experience with .9088/80286 assembly language. Second, integrating
the routines into the software complicates the integration
process.

Each compiler vendor must provide an Appendix F to the Reference
Manual for the Ada Programming Language which must specify all
implementation dependent characteristics of the compiler. The
Appendix F will indicate whether or not the low level features
are supported.

15

6. EXPERIENCES AND PERFORMANCE ISSUES

'Phe experiences reported in this section relato mainly to the
Alsys PC AT compiler (AlsyCOAP _003) Versions 1.0 and 1.2. Issues
such as code efficiency, the size of the runtime support code,
and the effectivene, of the task model implemgntation are
discussed.

6.1. CODE EFFICIENCY

The Alsys compiler can produ:e code that is as efficient, if not
more efficient, as that produced by the better PC compilers fc.
other languages. Benchmark tests 4 compared the Alsys compiler to
the Lattice C (Revision 2.15) compiler and Turbo Pascal Version
2.00. The re:u its are very encouraging and .3how that Ada
compilers can in fact produce efficient code. In many tests the
Ada compiler outperformed the other compilers. The SARAH team was
particularly interested to see how well the Alsys compiler
implemented procedure calls. SARAH was designed using modern
soCtwafe engineering practices and so coazcfit of many small
functions and procedures (or tools). If the application was to
operate effectively, then the overhead associated with procedure
calls needed to be minimal. The Ackermann function12 is a good
indicator of how effectively calls are implemented; the benchmark
tests showed that the Alsys implementation is considerably more
efficient than either Turbo Pascal or Lattice C.

6.2. SIZE OF RUNTIME SUPPORT

The runtime 3upport module produced by the Ada compiler is large;
however, with care, the size of the runtime can be minimized for
a particular application. Experiments were done to see how large
the overhead would be when the Alsys compiler was used in
different modes and when different predefined packages were used.
Compiling a simple procedure consisting of a single "null"

statement created an executable file of 15,13 bytes. If tasking
was added to the runtime, the file size increased to 59,953
bytes. Compiling the same simple procedure, without tasking, but
specifying protected (or extended) memory mode produced a file of
40,545 bytes. These results show that the overhead for tasking
and protected memory can be quite large, so only those modes that
are required should be specified.

In addition to the runtime overhead, use of predefined packages
can add to the size of executmhle files. For example, when the
simple procedure was compiled with TEXT 10 (a package providing
jtandard text input/output routines), the executable file
increased in size from 15,315 to 41,953 bytes. If only one or two
functions are to Le used from TEXT 10, then this - - lar5 price
to pay, particularly if the target machine has a constrained
memory size. Since SAIIAH is to be targeted to a Zenith Z150
microcomputer with only 640 Kilobytes of memory, a decision was

16

ino not t o u o T XI1' 10. 0t.rie pro rid j) ick agos :it t
11:4 i de rab Iy to the -i ze of tho ox .cutn I ft L h bu t, iio w o wh t', rii r

as much a- "EXT '). XPor example, :3EQI NTL [AL 10 increased the
size of the executable file from 15,313 to 22,117 bytes whi le
DIREC? 10 increases the size to 23,249 bytes.

If memory size is constrained then care must be taken to minimize
the runtime and pre-defined package overhead. To see how large
the overhead could become for a typical application, the simple
"null" procedure was compiled with TEXT 1O in the tasking and

protected modes. The size of the executable file was 87,377
bytes. That is a big memory overhead just to execute a "null"
statement. By adding a package which instantiated DIRECTIO and
SEQU 'NTIAL O, the size of the executable rose to 94,657 bytes.
With Ada, the executable fi le can be quite large, even if the
actual work element is smal [. Care nust be taken to t-i for
compilation and use of predefined packages to meet 'he nee.- of
the application, or an unnecessary overhead will result.

6.3. RENDEZVOUS TIMES

Since rendezvou3 times for Ada task communications are stilL in
the low millisecond range, designers must be careful not to incur
too much of an overhead because of task rendezvous. Lxact
rendezvous figures are not available for the Alsys compiler;
however, discussions with Alsys and other users indicate that
that times are between three and 10 milliseconds. Until
rendezvous times become acceptable (at least within the raid
microsecond range) designers should look towards using procedures
instead of tasks wherever possible. The Process Abstraction
Methodology for Embedded Large Applications (PAMELA)1 3 has
specific criteria for deciding when to use tasks and procedures.
Several other schemes can be used to reduce the effect of poor
rendezvous times. For example, the Modular Approach for Software
Construction, Operation and Testing (MASCOT3)1 4 uses control
que:les and pools to get around the rendezvous problem.

6.4. TASK SCHEDULING

Currently, the Alsys compiler does not have times licing
Linp i mented for tas-k :ichduLLng. As such, Ain application whioh
ha:s task k may not execute as expected. For example, 'igure 0. 1
contains a simple tasking application where both tasks are of
equal priority. One would think tht when the program executed,
we would get a few lines of "Task one active.." followed by a few
lines of "Task two active.." and so on, depending on the duration
of the time slice. What in fact happens with the Alsys compiler
is that only one of the messages will be printed over and over
again. The problem is that there is no timeslicing implemented
for task scheduling and so the compiler performs scheduling only
at task synchronization points (i.e. at rendezvous points, at the
end of a delay, and at task activation). As such, one task will
execute until it becomes unrunable, reaches a synchronization

17

point, or a task with a higher priority bet,,)mes runable. Normal

priority rules are followed for pre-empt nri and the priority

oaliies are in the range 1 .. 10.

6.5. QUALITY

lany of the Ada products currently availqble are of dubious

quality; however, this certainly does not apply to the ALSYS

PC A2 compiler. The Alsys compiler is a very reliable and robust

piece of software. Very few problems have been tound with the
compiler and the standard of documentation i3 extreinely high. The

compiler is very easy to use and comprehensive on-line help is
available. The user interface follows the conventional compile,

bind, and execute cycle and, although easy to use, becomes a

little tedious after a while. Alsys should look at providing a
muore integrated approach such as that provided by Borland with

Turbo Pascal. The diagnostics provided by the compiler are

effectire o-- hip pinpoint many problems. In summary, the Alsys
PC AT compiler is an excellent product.

This does not mean that the compiler cannot be used for
concurrent appl ications. However, developers need to be
cognizant of this limitation so that unexpected problems do not

adversely affect the development schedule.

18

with TEXT [0;
use T,:XT_ 10;

procedure TASK TEST is -- a procedure to check for task scheduling

task Task One;

task Task Two;

task body TaskOne is

begin

loop -- forever
Put Line ("Task one active..");

end loop;

end TaskOne;

task body Task Two is

begin

loop -- forever
Put Line ("Task two active..");

end loop;

end TaskTwo;

begin --activate tasks

null;

end Task Test;

FIGURE 6.1 Task Scheduling Example

19

7. FUTURE DIRECTIONS

The micro compilers that are currently available are sufficient
for developing kda software. As illustrated, there are still
taany areas where improvements are required. This section
provides information on the features that will be available in
fut ire generations of Ada compilers.

The next generation of Ada compilers will provide faster
compilatinn. But how fast? Dr R obert Dewar Crom New York
'Iniversi ty (NY'J) indicated d1ring a session at the Pittsburgh

S da meet ing (held in .11ly 96) thut NYI1 had dev pe,]
C f t w -i r e r o r ,i A I' w h i c h w i I L c 1* ,) r il .J y !1 1 K h o h ,c k s P i n t

1 .2 ,o,)o Iioes of Ada so-rce code per mi r Jte. From th Ls result
and other re3earch, he believes that Ada compilers should be able
to compile at a rate of 20,000 lines per minute. Indeed, this is
big improvement over current compilers which compile, on average,
at rates of less than 1000 lines per minute.

len)rs are now concentrating on code quality. Many of the
current compilers do not support optimization. Compiler vendors
have found that the task of designing and developing Ada
compilers is enormous. Now that their compilers are operational,
vendors are resorting to "fine tuning". For example, the next
version of the Alsys compiler will incorporate a high level
ontimizer. Plans are also underway to introduce a low level
optimizer. ode produced by future Ada compilers wil be far
more efficient than that produced by current coutpi Ieri. r) her
performance improvements will include faster task rendezvoui
times and better task scheduling implementations.

,'sture compilers will be more user-friendly and operate within
integrated development environments. As more Ada tools become
available for PCs, vendors will need to specify common interfaces
so that the tools can work together. The traditional compile,
bind and execute cycle will give way to a more interactive
environment which will include syntax directed editors, smart
debugging tools, and distributed networks.

Users will ultimately work with a family of compilers. During
initial development, users will be able to eliminate syntax
errors by using fast syntax parsers (perhaps integrated with the
editor)- To ensure the code will compile correctly, a high speed
compiler wi1l La uaed. This compiler will allow for incremental
and partial compilation. After the system has been successfully
compiled and executed, an optimizing compiler will produce the
efficient code needed for the the final product. These various
levels of compi lation nay form an integral part of :in Ada
development environment.

20

8. SUMARY AND RECOMMENDATIONS

8. 1. SUMMARY

,It b%13 : -1 tools are avai lablo to develop Ada : ot'tdir. w th
microcomputers: however, there is enormous room for improvoment.
Microeomputors, patrticularly PCs, are becoming rnoe powerful and
so are In a better position to effectively host kda compilers and
Ala leve Lopment tools. As the number of Ada projects increa.3e3,
t ere will be a proliferation of compilers and tools.
Sic rocornputers wi l I play a large part in Ada software
development. Networking, distributed source data base3 and
libraries, and low costs will make them attractive for
organizations engaged in developing Ada software products.

: t iI recently, the Ada commun. ty has lacked tne too 1 s to
effect ively develop Ada software applications. Considiring, th t
the language was stan lardized in 1983, vendors have been slow . -
provide the required compilers and tools. The complexity , " the
ln iage, a previosly limited market, and complicated vallintio
procedures nave often been blamed for the slow response.
However, there are now sufficient compilers for most appli cations
anI the number of new products is increasing expon-ntial ly.
Arm od with current Knowledge, continued research, and , hup-, Ia
.-1'tftware mrket, compiler vendors will continue to improve theLr
proi,-ts and strive to provide features which further aii the ! da
s ftware devcloper.

As the number of available Ada compilers for micros increases,
effective requirements analysis and selection will be -in
important step in the development process. Selecting n Ada
cornpi ler can he far more difficult than selecting a compiler 'Dr
oller languages because Ada compilers are more easily re 1 ted,
they possess f-atures that allow integration with other tool ,
in i they are generail ly far more complex. Failure to coi rr -tly
sp,-, ify and procure the right compiler could jeopardiz- the
s i - e s of t he development project. Since v-lidation s a,- p ly
ensires that the compiler conforms to the language standard, the
prospective users will have to resort to other techniques such as
benchmarking to test for quality and effectiveness.

Experiences with the Alsys PC AT compiler has shown thaL Ada -ode
can he as efficient as that produced by compilers for other
l nglages. However, the size of the runt ime support softwire
produced by the compiler will cause problems for applications
targeted to machines with limited memory if compilation -in the
:se of predefined packages is not properly managed. Another area
of concern f-or designers is task communications. 3ecause of
inet'ficient task rendezvous, designers need to careful ly assess
tqsk usage.

21

8,2. RECOMMENDATIONS

Recommendations are:

o Consideration should be given to using networked PCs in
Ada development environments.

Vendor supplied pre-defined packages should be used with
discretion.

o Ensure that you aro familiar ri th the I rnng
agceements before deciding on a compilor.

Perform an effective rqu L rementJ ,i qIyais before
selecting a compiler.

o Denchmark and test compilers before buiying.

When selecting a compiler, ask experienced users for
their view of your choice.

0 Ada software technology is fast moving and so it iz
extremely important to keep abreast of developnients.

12

A. REFERENCES

[1] "SARAH Operational Concept I)ocument", Command and ControI

Systems Office, US Air Force, 5 September 198o.

[2] MARBACH W. D., "Technology at New Plateaus", Personal
Computing, October 1986, pp 172-177.

L3] WALLIS P.J.L., W[CHMAN B.A., "Requirements Analysis For Ada
Compilers", Comm,,nications of the ACM Vol 24 No 1, pp 51-41.

[4J BROGSOL B., kVAKIAN A.S., GART M.B., "Alsys Ada Compiler for
the IBM PC AT.

[51 BARBACCI M.R., HABER'ANN N., SHAW M4., "The Software
Engineering Institute: Bridging Practice and Potential", IE',
Software, Nov 1986, pp 4-21.

[6] NISSON J.C.D., WALLIS P.J.L., WTCHMANN B.A., et al, Ada-
Europe Guidelines for the Selection and Specification of Ada
Compilers", ACA Ada Letters Vol III No 1 (July-Aug 1983) pp 27-50.

[71 U.S. Department of Defense, "Reference Manual for the Ada
Programming Language", ANSI/MIL-STD 1815A. Jan 1983.

[8] WEIDERMAN N., HABERMANN N., et al, "Evaluation of Ada
Environments: Executive Summary Chapter 1 Chapter 2", Software
Engineering Institute, August 1986.

L9J "Ada Language Implementations Matrix", Ada Letters,
Vol VT No 6 (November-December 1986).

i io] "Requirements for the Programming Environment for the
Common High Order Language", STONEMAN, Department of Defense,
Washington, D.C., November 19 1.

[1 1 "MIL-STD Common Ada Interface Set (CAIS)", National
Technical Information Service (NTIS), accession number AD k157-
,;89.

L12i WICHM4ANN B.A., "Ackermann's Function in Ada", ACM Ada
Letters Vol VI No 3 (May, June 1986), pp 65-67.

[131 CHERRY G.W., "The PAMELA Designer's Handbook", Thought
Tools, Reston VA.

[14] "Special Issue on MASCOT", Software Engineering Journal,
LEE Savoy Place London, Vol 1 No 3, May 1986.

23

B. DEFINITIONS AND ACRONYMS

Ada Information Clearinghouse (AdaIC): A jectLon of the AJPO

which provides information on Ada matters.

Ada Joint Program Office (AJPO): A U.S. Department of Defense

office responsible for the Ada programming language.

Ada Language System (ALS): An APSE developed by SofTech Inc,

Waltham MA.

Ada Programming Support Environment (APSE): An integrated set of

software development tools for Ada software development.

Ada Validation Office (AVO): An office of the U.S. Department of

Defense responsible for the validation of Ada compilers.

Automatic Digital Network (AUTODIN): Comninioations network for

U.S. Dep3rtment of Defense.

Descriptive Intermediate Attributed Notation for Ada (DIANA): An

:.ntermediate data representation for Ada compilers.

Mlicro: Short for microcomputer. A computer in which the Cvntral

Processing Unit is made up of one or more microprocessors.

Millions of Instructions Per Second (RIPS): A measurement of
computer execution speed.

Personal Computer (PC): A low cost desk-top microprocessor based

computer.

Personal Computer-Advanced Technology (PC AT): A computer that

is comatible with the IBM PC AT. This computer is based on the

Iil2l]L 80286 microprocessor and can address up to 16 Megabytes of

memory in protected mode.

Personal Computer-EXtended Technology (PC XT): A computer that

is compatible with the IBM PC XT. This computer is based on the

INTEL 8088 microprocessor and is generally limited to 640

Kilobytes of phsical memory.

Sidekick: An on-line utility program from Borland that provides

features such as a calendar, notepad, calculator, ASCIT table,

and phone directory.

Standard Automated Remote to AUTODIN Host (SABAH): A st,,tndard

intelligent terminal for AUTODIN users.

S uperKey: An on-line utility program from Borland that acts as a
!< r~vbo a r, e nh:aneer.

on I th - ',,: An 1t13 PC Xi' ,ompatible c,,npiter ,jold by "enith

"4

